The Binet function and telescoping continued fractions

Krishnan Rajkumar (JNU)

24-Feb-2022, 10:30-11:30 (4 years ago)

Abstract: The Binet function $J(z)$ defined by the equation $\Gamma(z) = \sqrt{2 \pi} z^{z-\frac{1}{2}}e^{-z} e^{J(z)}$ is a well-studied function. The Stirling approximation comes from the property $J(z) \rightarrow 0$ as $z\rightarrow \infty$, $|arg z|<\pi$. In fact, an asymptotic expansion $J(z) \sim z^{-1} \sum_{k=0}^{\infty} c_k z^{-2k}$ holds in this region, with closed form expressions for $c_k$ and explicit integrals for the error term for any finite truncation of this asymptotic series.

In this talk, we will discuss two different classical directions of research. The first is exemplified by the work of Robbins (1955) and Cesaro (1922), and carried forward by several authors, the latest being Popov (2018), where elementary means are used to find rational lower and upper bounds for $J(n)$ which hold for all positive integers $n$. All of these establish inequalities of the form $J(n)-J(n+1) > F(n)-F(n+1)$ for an appropriate rational function $F$ to derive the corresponding lower bounds by telescoping.

The second direction is to use moment theory to derive continued fractions of specified forms for $J(x)$. For instance, a modified S-fraction of the form $\frac{a_1}{x \ +} \frac{a_2}{x \ +}\frac{a_3}{x \ +} \cdots$ can be formally derived from the above asymptotic expansion using a method called the qd-algorithm. The resulting continued fraction can then be shown to converge to $J(x)$ by the asymptotic properties of $c_k$ and powerful results from moment theory. There are no known closed-form expressions for the $a_k$.

We will then outline what we call the method of telescoping continued fractions to extend the elementary methods of the first approach to derive the modified S-fraction for $J(x)$ obtained in the second by a new algorithm. We will describe several results that we can prove and some conjectures that together enhance our understanding of the numbers $a_k$ as well as provide upper and lower bounds for $J(x)$ that improve all known results.

This is joint work with Gaurav Bhatnagar.

classical analysis and ODEscombinatoricsnumber theory

Audience: researchers in the topic


Special Functions and Number Theory seminar

Series comments: To obtain the link to attend the talk, please send a request to sfandnt@gmail.com a few hours in advance of the talk. If you wish to be on our mailing list, please indicate. Please visit www.sfnt.org for information about previous seminars. Thank you!

Organizers: Gaurav Bhatnagar*, Atul Dixit, Krishnan Rajkumar
*contact for this listing

Export talk to